Nearest Neighborhood Grayscale Operator for Hardware-Efficient Microscale Texture Extraction
نویسندگان
چکیده
First-stage feature computation and data rate reduction play a crucial role in an efficient visual information processing system. Hardware-based first stages usually win out where power consumption, dynamic range, and speed are the issue, but have severe limitations with regard to flexibility. In this paper, the local orientation coding (LOC), a nearest neighborhood grayscale operator, is investigated and enhanced for hardware implementation. The features produced by this operator are easy and fast to compute, compress the salient information contained in an image, and lend themselves naturally to various medium-to-high-level postprocessing methods such as texture segmentation, image decomposition, and feature tracking. An image sensor architecture based on the LOC has been elaborated, that combines high dynamic range (HDR) image aquisition, feature computation, and inherent pixel-level ADC in the pixel cells. The mixed-signal design allows for simple readout as digital memory.
منابع مشابه
Compound Local Binary Pattern (CLBP) for Rotation Invariant Texture Classification
The local binary pattern (LBP) provides a simple and efficient approach to gray-scale and rotation invariant texture classification. However, the LBP operator thresholds P neighbors at the value of the center pixel in a local neighborhood and employs a P-bit binary pattern to encode only the signs of the differences between the gray values. Thus, the LBP operator discards some important texture...
متن کاملOn morphological color texture characterization
We investigate the combined use of multiple structuring elements with the standard morphological texture characterization tools, namely morphological covariance and granulometry. The resulting operator is applied to both grayscale and color images in the context of texture classi cation. As to its extension to color texture data, it is realized by means of a weighting based reduced vector order...
متن کاملA Novel Approach to Texture Classification using NSCT and LDBP
Texture is an important image feature and is defined as something consisting of mutually related elements. Texture based classification is an important approach for effective object recognition in digital images. This paper presents an efficient approach for texture classification based on local directional binary patterns (LDBP) and nonsubsampled contourlet transform (NSCT). The NSCT has trans...
متن کاملAn Efficient Batik Image Retrieval System Based on Color and Texture Features
Research in batik image retrieval is still challenging today. In this paper, we present an efficient system for batik image retrieval that combine color and texture features. The proposed approach is based on color auto-correlogram method as color feature extraction method and Gray Level Co-occurrence Matrix (GLCM) method as texture feature extraction method. Firstly, HSV (Hue Saturation Value)...
متن کاملFeature Fusion Technique for Colour Texture Classification System Based on Gray Level Co-occurrence Matrix
In this study, an efficient feature fusion based technique for the classification of colour texture images in VisTex album is presented. Gray Level Co-occurrence Matrix (GLCM) and its associated texture features contrast, correlation, energy and homogeneity are used in the proposed approach. The proposed GLCM texture features are obtained from the original colour texture as well as the first no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2007 شماره
صفحات -
تاریخ انتشار 2007